6.16 Actel Corporation manufactures an FPGA family called Act 1, which has the multiplexer based logic block illustrated in Figure P6.1. Show how the function \(f = w_2 w_3 + w_1 w_3 + w_2 w_1 \) can be implemented using only one Act 1 logic block.

Solution:

\[
\begin{align*}
 f &= w_2 w_3 + w_1 w_3 + w_2 w_1 \\
 \Rightarrow f &= w_3 (w_2) + w_1 (w_1 + w_2)
\end{align*}
\]

Figure P6.1 The Actel Act 1 logic block.

6.17 Show how the function \(f = w_1 w_3 + w_1 w_3 + w_2 w_3 + w_1 w_2 \) can be realized using Act 1 logic blocks. Note that there are no NOT gates in the chip; hence complements of signals have to be generated using the multiplexers in the logic block.

Solution:

Using Shannon expansion in term of \(w_3 \)

\[
\begin{align*}
 f &= w_1 w_3 + w_1 w_3 + w_2 w_3 + w_1 w_2 \\
 \Rightarrow f &= w_3 (w_1 + w_2) + w_3 (w_1 + w_2) \\
 \Rightarrow f &= w_3 (w_1 + w_2)
\end{align*}
\]
Consider the VHDL code in Figure P6.2. What type of circuit does the code represent? Comment on whether or not the style of code used is a good choice for the circuit that it represents.

Solution:
The code in Figure P6.2 is a 2-to-4 decoder with an enable input. It is not a good style for defining this decoder. The code is not easy to read. It is better to use the style in Figures 6.30 or 6.46.

Using a selected signal assignment, write VHDL code for a 4-to-2 binary encoder.

Solution:
ENTITY encoder_4to2 IS
 PORT (w : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 y : OUT STD_LOGIC_VECTOR(1 DOWNTO 0));
END encoder_4to2;
ARCHITECTURE Behavior OF encoder_4to2 IS
BEGIN
 WITH w SELECT
 y <="00" WHEN "0001",
 "01" WHEN "0001",
 "10" WHEN "0001",
 "11" WHEN OTHERS;
END Behavior;

Derive minimal sum-of-products expressions for the outputs a, b, and c of the 7-segment display in Figure 6.25.

Solution:
The truth table of 7-segment display is shown below:
\[a(w_1, w_2, w_0) = \sum m(0, 2, 3, 5, 6, 7, 8, 9) + d(10, 11, 12, 13, 14, 15, 16) \]

\[a = w_3 + w_1 + w_2 w_0 + w_2 w_0 \]

\[b(w_1, w_2, w_0) = \sum m(0, 1, 2, 3, 4, 7, 8, 9) + d(10, 11, 12, 13, 14, 15, 16) \]

\[b = w_2 + w_1 w_0 + w_1 w_0 \]
Design a shifter circuit, similar to the one in Figure 6.55, which can shift a four-bit input vector, $W = w_3w_2w_1w_0$, one bit-position to the right when the control signal $Right$ is equal to 1, and one bit-position to the left when the control signal $Left$ is equal to 1. When $Right = Left = 0$, the output of the circuit should be the same as the input vector. Assume that the condition $Right = Left = 1$ will never occur.

Solution: let, S_1 select = right shift and S_0 select = left shift

$$c = w_1 + w_0 + w_2$$

6.36 Figure 6.21 shows a block diagram of a ROM. A circuit that implements a small ROM, with four rows and four columns, is depicted in Figure P6.3. Each X in the figure represents a switch that determines whether the ROM produces a 1 or 0 when that location is read.

(a) Show how a switch (X) can be realized using a single NMOS transistor.
(b) Draw the complete 4×4 ROM circuit, using your switches from part (a). The ROM should be programmed to store the bits 0101 in row 0 (the top row), 1010 in row 1, 1100 in row 2, and 0011 in row 3 (the bottom row).
(c) Show how each (X) can be implemented as a programmable switch (as opposed to providing either a 1 or 0 permanently), using an EEPROM cell as shown in Figure 3.64. Briefly describe how the storage cell is used.

Solution:
(a) Each ROM location that should store a 1 requires no circuitry, because the pull-up resistor provides the default value of 1. Each location that store a 0 has the following cell
Every location of the ROM contains the following cell

If a location should store a 1, the corresponding EEPROM transistor is programmed to be turned off. But if the location should store 0, the EEPROM transistor is left unprogrammed.

6.37 Show the complete circuit for a ROM using the storage cells designed in Part (a) of problem 6.36 that realizes the logic functions

\[d_3 = \overline{a_0} \oplus a_1 \]
\[d_2 = a_0 \oplus a_1 \]
\[d_1 = a_0 a_1 \]
\[d_0 = a_0 + a_1 \]

Solution: